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Abstract: The fracture mechanics of concrete is connected to two things that are regularly subject to research: the 

length of the fracture process zone (FPZ) and the width of the fracture process zone (FPZ). Following the examination 

of this problem, this paper describes the process of discretization of the crack in the concrete using finite element 

method and its application for the determination of concrete fracture mechanics parameters. The results of testing on 

concrete samples made of concrete grade C30/37 of river gravel and crushed stone were processed. The paper 

demonstrates the principle of modeling such problems. 
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1. INTRODUCTION 

Concrete structures are full of damages that occur due to 

the hydration process, during strengthening and load 

application in the exploitation process.  

These are the damages that occur in the form of micro 

cracks which can gradually grow to considerable size and 

cause problems in structure exploitation or even lead to its 

failure. 

For these reasons, fracture mechanics of concrete 

structures that treat these issues significantly helps in 

observing occurrence of these processes in the concrete 

structures.  

The area, located in front of the macro crack, is called 

fracture process zone (FPZ) in the concrete. In the 

fracture process zone (FPZ) concrete still has the ability 

to transmit stress, i.e. it has defined remaining strength. 

This paper describes the modeling fracture areas process 

in the concrete directly in the fracture process zone (FPZ). 

 

 

 

 

 

Figure 1.  (a) Fracture process zone in the concrete; 

                 (b) Distribution of cohesive stress in FPZ 

 

This paper we will try to define how to model the fracture 

zone in the concrete directly in the fracture process zone 

(FPZ). 
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2. DISCRETIZATION WITH THE FINITE 

ELEMENT METHOD 

There are two values in fracture mechanics that regularly 

provoke the interest of scientists in the field of fracture 

modeling in the concrete, and that are (i) the fracture 

process zone (FPZ), and (ii) the width of the fracture 

process zone 

The experimental testing conducted by Peterson (1981) 

show that the length of the FPZ (fracture process zone) is 

significant and comparable, and the width is usually small 

compared to the length (depending on the maximum size 

of the agregate) and compared to the structure size.  

The most commonly used models are effective crack 

model (ECM) and cohesive crack model (CCM), which 

begin with the assumption that the fracture process zone 

(FPZ) is reduced to a line in a one-dimensional analysis or 

to a surface in a two-dimensional analysis. 

 

 
Figure 2. Model I of crack opening (split tension) 

When one macroscopic crack opens inside the defined 

direction for the clean Model I (Figure 2), cohesive crack 

can be easily modeled by means of the procedures 

proposed by Petersson (1981), which were further 

improved by Carpinteri (1989) and Planas and Elices 

(1991). 

In this model, the number of nodes along the potential 

fracture line is retained as fixed in the standard linear 

elastic finite element method (FEM).  

The potential fracture line for TPBT sample is shown in 

Figure 3. In the case of application of finite element 

method, the nodes in the crack are arranged so that the 

first is at the bottom of the crack, and n is at the tip of the 

crack along the potential fracture line. 

 
Figure 3. Discretization of finite elements along the 

fracture line  

Crack opening along the fracture line is caused by 

external load acting on the structure and grouped in the 

column w matrix and corresponding force on the nodes 

which are located in the column F matrix.  

The remaining node displacements and forces in the 

nodes for the remaining part of the structure are grouped 

in a column wR and FR matrix. This matrix form can be 

described as follows: 

 

{
𝐹
𝐹𝑅

} = − [
𝐾𝐶𝐶 𝐾𝐶𝑅

𝐾𝑅𝐶 𝐾𝑅𝑅
] {

𝑤
𝑤𝑅

}                                            (1) 

 

If we say that there are no other forces that affect the 

remainder of the sample, [𝐹𝑅]=0, and exclude all 

components of displacement wR from the expression, the 

matrix form of balance equation would have the following 

form:  

 

{𝐹} = [𝐾𝐹]{𝑤}                                                               (2) 

 

where: 

 
[𝐾𝐹] = [𝐾𝐶𝐶] − [𝐾𝐶𝑅][𝐾𝑅𝑅]−1[𝐾𝑅𝐶]                               (3) 

 

Crack opening for n nodes along the fracture zone is 

expressed in the following adjusted expression: 

 

{𝑤} = [𝐾]{𝑝} + {𝐶}𝑃 + {𝑃𝑔}                                         (4) 

 

In this equation  {𝑤} is the vector that represents the 

movement of nodes on the crack, [𝐾] is the symmetric 

matrix and Kij members represent crack opening in the 

node i, initiated by unit tensile force which causes the 

crack opening and is applied at node j, {𝑝} is the load 

vector in the nodes, {𝐶} is vector that represents the value 

of crack opening in the node and when P=1 (unit 

value). Finally,{𝑝𝑔} is crack opening vector in the point 

and the sample weight. 

In this analysis, we improved the methods of influence by 

Planas and Elices (1991), who used it to solve the 

equations (4). Assuming that the total number of nodes on 

the crack line is n and that the initial crack tip lies on the 

k-node, based on this method, the equation (4) is 

thickened between nodes i=1,2,3,.......(k-1) in the nodes 

i=k,(k+1),(k+2),.....,n. The equation (4) can now be 

written as follows:  

 

{
𝑤𝑁

𝑤𝐿
} = [

𝐾𝑁𝑁 𝐾𝑁𝐿

𝐾𝐿𝑁 𝐾𝐿𝐿
] {

𝑝𝑁

𝑝𝐿
}+ {

𝐶𝑁

𝐶𝐿
}P+{

𝑝𝑔𝑁

𝑝𝑔𝐿
}                     (5) 

 

Indexes N and L mark a part of the notch for i = 1,2,...., 

(k-1) and inter zones i=k,(k+1),(k+2),...,n. Since the crack 

opening width in the zone where i=k,(k+1),(k+2),...,n 

equals to zero, the initial crack in that zone without tensile 

strength can be express as follows:  

 
{𝑝𝑁} = {0}, 𝑧𝑎 𝑖 = 1,2,3, … … … … . . , (𝑘 − 1)

{𝑤𝐿} = {0}, 𝑧𝑎 𝑖 = 𝑘, (𝑘 + 1), (𝑘 + 2), … . , 𝑛
}             (6) 

 

Expressions (5) and (6) become: 

 



 

 3 

{𝑝𝐿} = [𝑀𝐿𝐿]{𝑤𝐿} − [𝑀𝐿𝐿]{𝐶𝐿}𝑃 − [𝑀𝐿𝐿]{𝑃𝑔𝐿}             (7) 

 

where: 

 

𝑀𝐿𝐿 = 𝐾𝐿𝐿
−1, {𝑇𝐿} = [𝑀𝐿𝐿]{𝐶𝐿}, {𝑇𝑔} = [𝑀𝐿𝐿]{𝑃𝑔𝐿} 

       

       {𝑝𝐿} = [𝑀𝐿𝐿]{𝑤𝐿} − {𝑇𝐿}𝑃 − {𝑇𝑔}                           (8) 

Furthermore, this binding area can be divided between 

cohesive (damaged) zone and non-cracked (undamaged) 

zone along the fracture line. If we consider that cohesive 

zone between nodes is j=k,(k+1),....,l  and undamaged 

part  of j=(l+1),(l+2),...,n, then with further thickening in 

the equation (8) we can write the following expression: 

 

{
𝑃𝐿𝐶

𝑃𝐿𝑈
} = [

𝑀𝐿𝐿𝐶𝐶 𝑀𝐿𝐿𝐶𝑈

𝑀𝐿𝐿𝑈𝐶 𝑀𝐿𝐿𝑈𝑈
] {

𝑊𝐿𝐶

𝑊𝐿𝑈
}- {

𝑇𝐿𝐶

𝑇𝐿𝑈
}P-{

𝑇𝑔𝐶

𝑇𝑔𝑈
}            (9) 

In the above expression indexes C and U denote the 

cohesive zones for j=k,(k+1),.....l  and undamaged zone 

for j=(l+1), (l+2),....,n. The width of the crack opening in 

the undamaged zone and in the last point of the cohesive 

zone is equal to zero, which can mathematically be 

expressed as:  

 

{𝑤𝐿𝑈} = 0, {𝑤𝐿𝐶}𝑗=𝑙 = 0                                        (10) 

 

Equations (9) and (10) become: 

 

{𝑝𝐿𝐶} = [𝑀𝐿𝐿𝐶𝐶]{𝑤𝐿𝐶 } − {𝑇𝐿𝐶}𝑃 − {𝑇𝑔𝐶}                   (11) 

 

For j=l node applied load can be expressed follows:  

 

𝑃 =
∑ {𝑀𝐿𝐿𝐶𝐶}𝑙,𝑗{𝑊𝐿𝐶}𝑗−{𝑃𝐿𝐶}𝑗=𝑙−{𝑇𝑔𝐶}

𝑗=𝑙
𝑙−1
𝑗=𝑘

{𝑇𝐿𝐶}𝑗=𝑙
        (12) 

 

With equations (11) and (12) for nodes j=k, (k+1), 

(k+2),......,(l-1) a large number of non-linear dependent 

equations can be formed for crack opening in the cohesive 

zone.  

Functional form of non-linear dependent equations can be 

expressed as: 

 

{𝑍} = [𝑀𝐿𝐿𝐶𝐶]{𝑊𝐿𝐶} − {𝑃𝐿𝐶} − {𝑇𝐿𝐶} ∙ 
                                                                                      (13)  

∙
∑ {𝑀𝐿𝐿𝐶𝐶}𝑙,𝑗{𝑊𝐿𝐶}𝑗 − {𝑃𝐿𝐶}𝑗=𝑙 − {𝑇𝑔𝐶}

𝑗=𝑙

𝑙−1
𝑗=𝑘

{𝑇𝐿𝐶}𝑗=𝑙

− {𝑇𝑔𝐶} 

 

If sign convention is used properly, this can be written as  

{𝑝𝐿𝐶} = −𝐹𝑢𝑐𝑓(𝑤𝐿𝐶), where in order to have proper 

discretization, we conduct division on the network size h, 

𝐹𝑢𝑐 = 𝐵ℎ𝑓𝑡, for all values i  except for the value of i=k, 

and i=n; and 𝐹𝑢𝑐 = 𝐵ℎ𝑓𝑡/2 for i=k and i=n. The solution 

to the equation (13) is obtained by using the Newton-

Rapshon method.  

Function Z and its Jacobian matrix for unknown crack 

opening (displacement) use different softening functions 

which are programed in separate functions.  

Thus, this method becomes useful and effective as well as 

many types of softening rules as much as they can be 

incorporated into the program. 

Following the solutions of the equation (13) for {𝑤𝐿𝐶}, the 

value of P can be determined with the equation (12) and 

the value {𝑝𝐿𝐶} with the equation (11). Returning 

backwards to equation (10), (9), (8), (6), (5) and (4) it is 

possible to determine all of the unknown values for {𝑤} 

and {𝑝}. 

3.DETERMINING THE DEFLECTION ON    

THE BEAM 

For known values of parameters {𝑝} and P, deflection in 

the middle of the beam 𝛿 is determined according to the 

following expression: 

 

𝛿 = 𝐷𝐿𝑃 + {𝐷𝑝}
𝑇

{𝑝} + 𝐷𝑔                                           (14) 

 

DL is deflection in the point where the load acts when the 

external load is P = 1 (unit), {𝐷𝑝} the load vector at the 

point of deflection when the vector unit load is {𝑝} = {1}, 

Dg presents a deflection in the middle of the beam due to 

its own sample weight.  

Members [𝐾], {𝐶}, {𝑝𝑔}, and Dg in the formulas (4) and 

(14) can be calculated using standard linear elastic finite 

element method.  

 
Figure 4.Typical four-node isoparametric plane element 

in (ξ,η) coordinates 

Experiments were conducted so that the finite element 

network in bands 3D/4 and D varies, whereas in the band 

of D/4 width is retained in the same ratio (aspect ratio of 

square sides in finite element network is equal to 1).  

The experimental testing was conducted on samples with 

dimensions B=100[mm], D= 100 [mm] and S = 400[mm]. 

The characteristic values of the used material are 

determined with WST test on standard concrete cylinder 

(150mm x 300mm).  

The resulting material properties have the following 

values : ν= 0,10, E=36,5 [GPa], 𝑓𝑡=3,29 [MPa], and 

GF=110 [N/m]. All beams are made of constant 

dimension and the height of the sample is                             

D = 100[mm]. Notch on the beam was taken in ratio of 

1/3 notch to beam height a0/D.  
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The test results conducted on the beam samples in the 

laboratory are shown in Table 1. 

 

Table 1: Test results of three-point bending geometry for      

notched concrete beam 

       
D 

 

S a0 P σNu GF 

(mm) Sample (mm) (mm) (kN) (MPa) (N/m) 

 

B100-k1 

  

6,321 2,71 118 

100 B100-k2 400 33 6,124 2,67 113 

 

B100-k3 

  

6,028 2,61 109 

 

B100-r1 

  

5,362 2,45 106 

100 B100-r2 400 33 5,089 2,19 101 

  B100-r3     5,158 2,32 104 

        

Finite element network was selected so that the sample 

was divided into 16 equal parts by height D.  

In the longitudinal direction the division was conducted 

so that the band D/2 was divided to 8 parts, band 3D/4 to 

8 parts and band D to four equal parts. A total of 14 nodes 

were selected along the fracture line. 

4. EXPERIMENTAL PART OF THE PAPER 

4.1 Description of the samples and models 

In this example we consider the sample of the notched 

beam, which was used for further testing, and the sample 

was examined according to the below specified geometric 

relationships.  

 
Figure 5. Geometry of test sample of notched beam 

Discretization of the beam by the finite elements was 

conducted as shown in Figure 6.  

Discretization of the beam was performed with typical 

four-sided isoparametric elements with four nodes, as 

shown in Figure 4.  

In order to simplify the calculation beam was divided by 

its length in the areas D; 3D/4, D/2, 3D/4 and finally D.  

According to this division we have the middle (D/2) 

width band, which was divided using finite elements 

network, and the remaining bands along the tested beam 

of 3/4D and D width, whose division was conducted on a 

smaller number of finite elements.  

Discretization of the beam by height D was conducted so 

that the number of divisions in the D/2 width band was 

selected and the aspect ratio of square sides in finite 

element network is equal to 1. 

 

D 3D/4 D/2 3D/4 D

 
Figure 6. Method of forming a finite element network 

In each case, finite element network can be selected and 

thickened in a different method, depending on the 

computer's memory. 

D 3D/4 D/2 3D/4 D

 
Figure 7. Method of forming a 512 finite elements 

network on a sample 

As can be seen in Figure 7, a network of 512 finite 

elements was adopted, the number of degrees of freedom 

is 561, and the number of nodes along the potential 

fracture line is 14. 

Firstly, coefficients such as [𝐾],{𝐶}, {𝑝𝑔}, {𝐷𝑝}, DL and 

Dg were obtained by the linear elastic finite element 

method.  

These coefficients are determined once during the 

experiment and are used all the time in determining the 

cohesive crack propagation. In the beginning, while the 

state in the element is linear elastic, tensile stress in the k 

node will reach the limit of concrete tensile stress, and 

formation of crack will first occur in this node.  

After that cohesive forces in the material begin to act on 

neighboring nodes according to given softening law. At 

this time the unknown values are {𝑤𝐿𝐶}𝑗=𝑘, (𝑘 +

1), … , (𝑙 − 1)and P, and are determined with equations 

(12) and (13).  Subsequently, the values {𝑤} and {𝑝}are 

calculated, and then the beam deflections δ are 

determined using equation (14). 

In this step, the first point of the P-CMOD and curve that 

shows the relationship between load and strain (P-δ) are 

determined. In the second phase of the calculation, 

external load P was increased to the value where the 

tensile stress in the concrete at the node (k +1) is greater 

than the strength of concrete in tension. 

 At this point we now have a situation that crack is formed 

in the node (k+1) with cohesive forces acting in that 

node. In the same manner, as mentioned above in second 

phase, the values of P-CMOD and P-δ curve are 

calculated.  

This process continues until the crack develops in the 

node (l-1), and continues until the crack reaches node l=n. 
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The number of unknown values in each step is as high as 

the number of nodes where crack occurred in the cohesive 

zone.  

At each stage of the calculation, the value of COD (crack 

opening displacement) is checked and when it becomes 

greater than or equal to wc (max. COD) corresponding 

values of forces in the nodes take the value zero.  

This same calculation is conducted on a sample with 

thicker finite elements network. 30 finite elements were 

selectedby height, band D was divided to 10 parts, band 

3D/4 also to 10 equal parts and band D/2 to 15 equal 

parts. 

In this case we got a network of 1650 finite elements, the 

number of degrees of freedom is 1736, and the number of 

nodes along the potential fracture line is 20.  

Peak loads obtained from the numerical results for the 

first case is 7.15 kN and for the second case of division to 

the thicker finite element network is 6.71 kN. 

5. CONCLUSION 

It has been determined through these examples that the 

finite element network in these cases did not much affect 

the coefficients along the fracture lines. It was shown that 

even if we make the relatively thicker finite element 

network such model provides stable peak load values for 

these samples. 
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