
ORIGINAL ARTICLE

Adaptive process control based on a self-learning mechanism
in autonomous manufacturing systems

Seid Žapčević & Peter Butala

Received: 29 March 2012 /Accepted: 6 August 2012 /Published online: 29 August 2012
# Springer-Verlag London Limited 2012

Abstract To survive in the highly competitive global econo-
my, manufacturing systems must be able to adapt to new
circumstances. An important prerequisite for adaptation is
the ability to learn, a process based on knowledge discovery
and growth. The aim of this research is to uncover knowledge
by examining a large volume of real-time manufacturing data
collected during manufacturing operations and to use the
insights gained to support decision-making and adaptive pro-
cess control. The paper presents the concept of a self-learning
autonomous work system. This concept introduces a learning
loop into a manufacturing system composed of data acquisi-
tion, data mining (DM), and knowledge-building models.
Two methods for DM are applied. A descriptive DM method
enables discovery of patterns in data that may contribute to a
better understanding of the manufacturing processes. A pre-
dictive process provides knowledge in the form of rules,
which can then be used for enhanced decision-making. To
illustrate the utility of the knowledge models, the concept of
adaptive process control is introduced and implemented in a
high pressure die-casting domain. A case study based on
industrial data collected during die-casting operations pro-
vides a demonstration of the concept.
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1 Introduction

Manufacturing enterprises are facing an ever more turbulent
environment where customised and personalised products
are in demand, new technologies are continuously emerg-
ing, markets are frequently shifting, national economies are
affected by severe crises, and competition is globally in-
creasing. The rapidly changing conditions, needs, and op-
portunities of the twenty-first-century global market are
forcing manufacturing enterprises to steadily adapt them-
selves to new situations.

An important prerequisite for adaptation is the process of
learning. Systems with learning capabilities are the only
systems that are able to adapt themselves to emerging sit-
uations and changing conditions. A continuous system’s
adaptation results in its growth or evolution over time.

Of course, many different sources of knowledge and
ways of learning exist that could be put into practice in a
manufacturing system. These knowledge sources may in-
clude everything from conventional textbooks and hand-
books to digital libraries and other electronic resources.
Various other learning and training methods can be imple-
mented, from classical education to learning-by-doing and
modern e-learning techniques.

Knowledge discovery in databases (KDD) is an advanced
learning technique. This technique facilitates learning by
data mining (DM) of actual data collected during the oper-
ation of a business system and stored in large databases and/
or data warehouses. KDD enables detection of patterns of
behaviour and causalities hidden in the data and thus repre-
sents a valuable source of new specific knowledge, which
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may contribute to a better understanding of the observed
system and to enhanced management and control.

In this paper, the process of learning from large databases
of manufacturing operational data is described. In modern
manufacturing systems, operational data are collected on-
line and in real time by supervisory control and data acqui-
sition (SCADA) and/or manufacturing execution systems
(MES). The SCADA and MES databases usually comprise
large volumes of historical and actual data on processes,
operations, resources, workpieces, and environment. These
data represent a valuable asset and a source of knowledge
that must be extracted in a meaningful way and properly
managed for utility in a system’s operations.

This paper addresses the issue of knowledge discovery
and management in manufacturing systems. The concept of
a self-learning mechanism for autonomous work systems
(AWS) is proposed, based on on-line acquisition of produc-
tion data, warehousing of the data, DM, knowledge elicita-
tion, and management. Due to the scope of the issue, this
research is limited to learning from process data with the
objectives of providing a better understanding of manufac-
turing processes and enhancing process control to improve
process performance. Two different DM techniques are ap-
plied: (1) descriptive DM for understanding patterns in
process data and (2) predictive DM for decision making in
adaptive process control. Three levels of knowledge models
are introduced: (1) a meta-meta-model on a generic process
level, (2) a meta-model (which is an implementation of the
meta-meta-model in a certain process domain), and (3) a
knowledge model, which represents specialisation of the
meta-model for a specific dataset. Additionally, the concept
of adaptive process control is described in detail.

The approach is implemented in high-pressure die-
casting processes, which are broadly used in modern indus-
tries such as the automotive and consumer electronic indus-
tries; the approach is verified on an industrial dataset from a
die casting foundry.

2 Literature review

2.1 DM methods

With the development and implementation of computerised
information systems, more and more data are collected
during various business processes and stored in large data-
bases. Traditional statistical methods and tools are not ca-
pable of analysing such large volumes of data. Hence, new
methods for dealing with large volumes of data in databases
are becoming extremely important with the objective of
extracting useful information and knowledge for decision-
making; these methods include knowledge discovery in
databases and DM methodologies.

The KDD approach, as noted in Ref. [1], seeks new
knowledge in a certain application domain. This approach
is defined as the nontrivial process of identifying valid,
novel, potentially useful, and ultimately understandable pat-
terns in data. The process can be generalised to non-
database sources of information, although it emphasises
databases as the primary source. In general [2], there are
two main objectives in KDD: (1) validation of a hypothesis
and (2) discovery of new patterns. Discovery can be further
divided into ‘prediction’, where the knowledge extracted
enables better forecasting of the values of the entities repre-
sented in the dataset, and into ‘description’, where the
extracted knowledge is aimed at improving comprehension
of the patterns discovered.

KDD is composed of several steps implemented in a
sequence. Each subsequent step is initiated upon successful
completion of the previous step and requires the result
generated by the previous step as its input. The KDD pro-
cedure can be defined by a model [3]. In the context of this
research, a six-step KDD process model is adopted as de-
fined by Cios and Kurgan [4]. The model is composed of the
following steps: (1) understanding the problem domain, (2)
understanding the data, (3) preparing the data, (4) mining of
data, (5) evaluating the discovered knowledge, and (6) using
the discovered knowledge. In KDD, DM can be seen as the
key process that leads to knowledge discovery.

Fayyad et al. [3] define DM as a step in the KDD process
that consists of applying data analysis and discovery algo-
rithms that (under acceptable computational efficiency lim-
itations) produces a particular enumeration of patterns (or
models) over the data. DM denotes a combination of con-
cepts and algorithms from machine learning, statistics, arti-
ficial intelligence, and data management [5]. DM has been
successfully used in many domains, such as banking, fi-
nance, marketing, insurance, science, and engineering, for
discovering hidden relations and causalities in data.

2.1.1 Descriptive DM methods

The descriptive approaches, as depicted in [6], fall into
two categories: identifying interesting patterns in the data
and clustering the data into meaningful groups. Algo-
rithms for discovery of patterns in large datasets, such
as sales data, are the key success stories of DM research
[7]. Additionally, algorithms for pattern discovery in time
series datasets, which are collected by process monitor-
ing, have been developed [8, 9]. The patterns discovered
from process data can provide insights into the relation-
ship between different features and can also be used to
discover association rules.

Another descriptive DM method is clustering, which is
the unsupervised classification of patterns (observations, data
items, or feature vectors) into groups (clusters). According to
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Ref. [10], the existing clustering methods can be categor-
ised according to several criteria. Based on the method
used to identify the clusters, they can be classified into
partitioned, hierarchical, density-based, and grid-based
algorithms [2]. Clustering is an interesting, useful, and
challenging problem. It has great potential in applications
like object recognition, image segmentation, and information
filtering and retrieval.

2.1.2 Predictive DM methods

Bharatheesh and Iyengar [11] define predictive DM as
the process of automatically creating a classification
model from a set of examples, called the training set,
which belongs to a set of classes. Once a model is
created, it can be used to automatically predict the
classes of other unclassified examples. Predictive DM
is applied to a range of techniques that find relation-
ships between a specific variable (called the target var-
iable) and the other variables in a data set. Predictive
DM methods can be implemented for classification,
value prediction, and association rules, among others.
Commonly used predictive methods include statistical
methods, decision trees, rule algorithms and their
hybrids, artificial neural networks, and support vector
machines.

The statistical methods used for classification and
prediction include Bayesian methods and regression
models [1]. Decision trees, rule algorithms, and their
hybrids form another category of predictive DM and
are described in [12]. Decision trees are constructed by
analysing a set of training examples for which the class
labels are known [13]. The decision trees are then
applied to classify previously unseen examples. If
trained on high-quality data, decision trees can make
very accurate predictions. Examples of advanced deci-
sion tree algorithms are ID3, C4.5, ID5R, and 1RD.
According to Ref. [14], the most well-known decision
tree learner is C4.5 (C5.0 is its recent upgrade), which
is widely used and has also been incorporated into other
commercial DM tools (e.g., Clementine and Kepler). An
artificial neural network (ANN), often referred to as a
‘neural network’ (NN), is a mathematical model or
computational model based on biological neural net-
works. In other words, it is an emulation of biological
neural systems [15]. According to their topology, ANNs
can be classified as feed-forward neural networks and
recurrent networks. Support vector machines (SVMs)
are useful techniques for data classification. Boser et
al. [16] define the support vector machine as a comput-
er algorithm that learns by example how to assign labels
to objects. SVM has been considered as one of the most
effective supervised learning algorithm in many pattern

recognition problems [17]. SVM provides better classi-
fication results than other methods such as neural net-
works or decision trees [18].

2.2 DM in manufacturing systems

Manufacturing is one of the modern-day domains that must
deal with large databases [19]. Data collected in manufac-
turing are related to various manufacturing processes, such
as product and process design, resource planning, operations
management, material processing, assembly, material logis-
tics, maintenance, etc.

Several cases illustrating the application of DM in indus-
try can be found in the literature. According to [20], manu-
facturing enterprises collect and store large volumes of
various data that are not sufficiently exploited for competi-
tive improvement. DM, together with knowledge manage-
ment and business intelligence, has the potential to change
the stakes. These techniques are able to assist enterprises to
collect, extract, create, and deliver manufacturing knowl-
edge in a competitive environment.

A comprehensive review of the literature on DM appli-
cations in manufacturing, with a special emphasis on the
type of knowledge mined, is provided [21]. The paper offers
an overview of relationships among knowledge areas,
mined knowledge and used DM techniques. Additionally,
the integration of DM systems within manufacturing sys-
tems is recognised as one of the perspective areas for re-
search. The power of mining process data for the purposes
of revealing hidden correlations between process outcome
and process parameters is examined in [22].

Implementation of DM in the design of products and
manufacturing processes is presented in [23]. DM can be
used to extract knowledge that can be used to explain the
past, avoid past mistakes, and propose future improvements
to past strategies to make the design more effective and
efficient. Kusiak [24] outlines areas of product and manu-
facturing system design with a potential for DM applica-
tions. In another paper, Kusiak [25] proposes a framework
for knowledge management and implementation for
decision-making in manufacturing and service applications.
The framework provides different decision support tools,
such as decision tables and decision maps.

As clearly indicated in the literature review, KDD and
DM provide effective and efficient methods and tools for
learning and can be successfully implemented in manufac-
turing as well. However, there exists no approach that would
capitalise on knowledge learned from data and use the
knowledge for decision-making in a systemic way. Based
on this recognition, a new concept of the manufacturing
system is introduced in the next section, one which has the
ability to learn from its history, i.e., from previously per-
formed manufacturing operations.
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3 Concept of a self-learning autonomous work system

3.1 Background and objectives

The objective of this research is to support decision-making
in various levels of manufacturing systems with domain-
specific knowledge gained from historical experiences and
cognitions derived from operational data. It is expected that
the new knowledge will contribute to improved manage-
ment and control of manufacturing systems.

The concept originates from the work proposed by Butala
and Sluga [26]. Within this work, an AWS is introduced and
defined as a manufacturing system with rounded technolog-
ical functionality and corresponding management function-
ality that is capable of and competent in performing
particular manufacturing processes. As such, it is an auton-
omous and lean manufacturing structure and a suitable
building block of intra- and/or inter-enterprise manufactur-
ing networks.

The AWS is composed of the management entities, basic
work entities (i.e., elementary work systems (EWS)), and
monitoring entities. The entities are structured in two control
loops to manage and control operations. The inner control
loop enables real-time control of operations and is com-
posed of planning and control by a controller along with
feedback by sensor monitoring. The outer control loop
enables performance-based control via management of
resources and performance evaluation via feedback. The
basic structure also includes the data and knowledge
(D&K) base and the LAN communication infrastructure
[26]. The control loops and the D&K base form an indepen-
dent AWS information system, which corresponds to a
manufacturing execution system (MES) and facilitates
AWS autonomy as well as communication with other systems
within a network.

Although the AWS concept ensures a high level of au-
tonomy in decision-making and the communication needed
for cooperation and collaboration with other elements of a
network, an important capability is missing and that is the
ability to learn. Only learning can facilitate adaptation and
thus evolution of any systems. Therefore, the AWS concept
is upgraded to the self-learning autonomous work system
(SL.AWS) concept in this research.

3.2 Structure of a self-learning autonomous work system

The SL.AWS structure is revealed in Fig. 1. In addition to
the basic AWS structure, which is structured in the real-time
control loop and the performance management loop (as
previously described), a learning loop is added on the top
of the structure.

Figure 2 focuses solely on the data collection and learn-
ing loops. The learning loop is founded on the database

where data collected in the real-time loop during manufac-
turing operations are stored. The database contains data on
processes (process parameters), resources (human subjects,
machines, tools, etc.), workpieces (quality parameters of
input material and output components), operations (work
orders, quantities, productivity, due dates, etc.), and the
environment (air temperature, relative humidity and pres-
sure, pollution, dust, noise, illumination, etc.). Data on
process and environmental parameters, resource and work-
piece states, and events related to production and operations
are collected through three different channels: (1) on-line
sampling of sensors’ signals and data capturing for physical
quantities, (2) periodical or event-driven sampling by com-
municating data from digital controllers of EWS (controller
actions and on machine sensed parameters), and (3) event-
driven sampling by interaction of human subjects (subjects
states and operations events) with production data acquisi-
tion terminals as defined in Ref. [26].

This database represents the input for DM. The results of
DM are used for knowledge elicitation. The newly discov-
ered knowledge is then stored in the form of knowledge
models in the knowledge base and managed for further use.

Knowledge models are structured on three levels. On the
top level, meta-meta-models are introduced. A meta-meta-
model is understood here as a reference description of meta-
models of a kind and corresponds to a certain DM method,
such as clustering. On the intermediate level, meta-models
are grouped. A meta-model is understood as a domain-
specific description of a knowledge model, e.g., for die
casting, turning, grinding, etc. Each meta-model group cor-
responds to one meta-meta-model. On the lowest level,
knowledge models are located. A knowledge model is an
actual representation of knowledge based on a certain data-
set and corresponds to one meta-model.

The meta-meta-models and meta-models facilitate con-
trolled knowledge discovery, while the knowledge models
represent new knowledge, which can be used for adaptive
process control as well as for interactive decision support
during process and operations planning, set-up procedures,
quality management, forecasting of malfunctions, fault di-
agnosis, and maintenance planning, among others. It can
also be used for discovering hidden relationships (for
example between quality process parameters and the
environment), which may then contribute to a better
understanding of the process. The knowledge can also
be accessed by the knowledge management function for
other systems in the network. This newly introduced
learning loop makes it possible for the SL.AWS to
continuously learn from experiences regarding opera-
tions that are performed in the system and to constantly
improve and evolve on this basis.

Due to the extensive scope of the issue, in this re-
search, self-learning is limited to knowledge discovery in
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manufacturing process data. Possible implementation of
new process knowledge in adaptive process control is
discussed in the next section.

3.3 Building of knowledge meta-meta-models

Let us now explain how new process knowledge can be
elicited in a corresponding knowledge model and made
available for decision support. In SL.AWS, various manu-
facturing processes are carried out, such as turning, milling,
welding, and high-pressure die casting (HPDC). During
these operations, different process parameters are measured
on-line, and the measured data are recorded in a process
database. Thus, process data are collected over time
during manufacturing process cycles and then stored.
This dataset can be organised in a matrix X according
to Eq. (1).

X ¼

x11 � � � x1p
� � �
� � �
� � �
xn1 � � � xnp

�

2
66664

3
77775 ð1Þ

where, n is the number of instances and p is the number
of attributes.

In practice, the number of instances is much greater than
the number of attributes (n>>p), and the attributes can be of
different types. In the case of process parameter measure-
ments, the attributes are numerical values belonging to the
set of real numbers (xij ∈ R).

The dataset X represents input for the process of
knowledge discovery in databases. KDD is performed
off-line in six steps [4]. In the first step, the data must
be cleaned, and outliers that clearly do not correspond
to the dataset have to be removed. Additionally, the
attributes that are not relevant for knowledge discovery
are excluded. The data cleaning process is executed by
an expert from the particular domain with the aid of
statistical tools. The cleaning process can be repeated
several times in an arbitrary manner until the expert is
satisfied with the remaining dataset.

The cleaned dataset is then ready for DM. To gain an
overview of patterns in data, a descriptive DM method-
ology, such as partition-based clustering, is applied first.
Partition-based clustering relies on a certain objective
function whose minimisation is intended to lead to the

Fig. 1 Model of a self-learning autonomous work system (SL.AWS)
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‘discovery’ of the structure existing in the dataset. Clus-
tering results in data clusters, i.e., groups of instances
that evidently belong together (see Fig. 3). In the case
of process datasets, centroid-based clustering generally
provides useful information about patterns in data. Here,
each cluster is defined by a central vector, or centroid,
around which other instances of data belonging to a
particular cluster are distributed. The centroids describ-
ing a certain dataset are defined in Eq. (2):

C1 ¼ a11; a12; . . . ; a1p
� �

C2 ¼ a21; a22; . . . ; a2p
� �

. . . . . . . . . . . . . . . . . . . . . . . .
Ci ¼ ai1; ai2; . . . ; aij

� �

9>>>=
>>>;

ð2Þ

Ci ith centroid, i01,2, …, k
aij Value of jth attribute of the ith centroid, i01,2, …, k;

j01, 2, …, p
k Is the number of centroids—clusters
p Is the number of attributes in the observed dataset X.

The centroids may not necessarily be members of the
dataset.

Clustering is an arbitrary process guided by an expert
and can be repeated until the expert is satisfied with the

number of clusters k and distributions of data instances
within them.

The centroids defined in Eq. (2) represent a descriptive
knowledge meta-meta-model. By implementing it within a
certain domain, a corresponding descriptive knowledge
meta-model is obtained. In Section 4, the centroids meta-
meta-model is applied to the HPDC domain by defining the
concrete process attributes to be monitored and the
corresponding data collected. When we implement the
knowledge meta-model and corresponding DM algorithms
to an actual dataset X, a new descriptive knowledge model
is derived in terms of identified centroids that symbolise the
new knowledge about the process articulated by the dataset
X. Section 5 examines interpretation of knowledge derived
from a dataset obtained during a series of die casting
operations. This descriptive knowledge model can be
stored in the knowledge base according to Fig. 2 and
can be used for (1) definition of reference values for a
machine controller and (2) selection of target values in
adaptive process control.

In the next step, DM with predictive algorithms can be
performed to obtain a predictive knowledge model. The
objective is to discover a mathematical model that best fits
the input data and can perform estimation of output process
parameters during future process cycles and/or modification
of input parameters to achieve target values of the output
process parameters, thus improving process stability. One

Fig. 2 Data collection and
learning loops
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has to have in mind that the process data are numerical
values (Eq. 1); therefore, a mathematical model is feasible.
However, due to the large number of attributes, it is difficult
to find a single model that fits the entire dataset.

Therefore, the dataset is divided into several smaller sub-
sets for which local regression models are adjusted; these
regression models fit the data well and describe a portion of
the entire data space. For this purpose, rules with local regres-
sion models are generated, and their scope is then narrowed
down to the condition portion of the rule (Eq. 3), that is,

IF condition is Am THEN y ¼ fm X ;wmð Þ ð3Þ

The regression model (fm) can be linear or nonlinear and
applies only to the inputs x from the dataset X that belong to
the information granule represented by Am [1], where is the
range of attribute Am’s value (range lower limit (lm) and
range upper limit (um)), wm is the weight coefficient and y

is the class type. The rule can be interpreted in the following
manner: if an object has attribute values that fall in the
ranges on the left hand side, then its class type is likely to
be y (with some high probability).

For each class type y, a set of rules with corresponding
local regression models is obtained that describes the
given dataset X. In the case that the class type is
numeric and all attributes are numeric as well, the linear
regression models are suitable for the knowledge model.
According to [12], the linear regression is an excellent,
simple method for numeric prediction, and it has been
widely used in statistical applications for decades. If the
data exhibits a non-linear dependency, the best-fitting
straight line will be found, where ‘best’ is interpreted
as the least mean-squared difference.

Therefore, a set of rules with sets of local regression
models are obtained; these sets form a predictive knowledge
meta-meta-model in the following form:

Fig. 3 Clustering of a dataset X in the aj–aj+1 plane and the corresponding centroids C1 and C2
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yð1Þ1 ¼ wð1Þ
10 a10 þ wð1Þ

12 a12 þ wð1Þ
13 a13 þ . . .þ wð1Þ

1p a1p

: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yðqÞ1 ¼ wðqÞ
10 a10 þ wðqÞ

12 a12 þ wðqÞ
13 a13 þ . . .þ wðqÞ

1p a1p

9>>>=
>>>;

yð1Þ2 ¼ wð1Þ
20 a20 þ wð1Þ

21 a21 þ wð1Þ
23 a23 þ . . .þ wð1Þ

2p a2p

: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yðqÞ2 ¼ wðqÞ
20 a20 þ wðqÞ

21 a21 þ wðqÞ
23 a23 þ . . .þ wðqÞ

2p a2p

9>>>=
>>>;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yð1Þj ¼ wð1Þ
j0 aj0 þ wð1Þ

j1 aj1 þ wð1Þ
j2 aj2 þ . . .þ wð1Þ

j p�1ð Þaj p�1ð Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yðqÞj ¼ wðqÞ
j0 aj0 þ wðqÞ

j1 aj1 þ wðqÞ
j2 aj2 þ . . .þ wðqÞ

j p�1ð Þaj p�1ð Þ

9>>>=
>>>;

ð4Þ

where:

yj Class type, j01,2, …, p
ajp pth attribute in jth class type

aj001, j01,2, …, p
wjp pth weight coefficient in jth class type
p Is the number of attributes

(1), … , (q)—qth regression model corresponding to the
rule number for the jth class type.

Equations (3) and (4) represent the predictive knowledge
meta-meta-model. As in the case of descriptive knowledge
meta-meta-model, by implementing this model on a certain
domain, a corresponding predictive knowledge meta-model
is obtained, as described in Section 4 for the die casting
domain. In this model, the corresponding vector of attributes
a, and class types y must be defined. For example, for the
class types y, those input process parameters are selected
that are controlled by a machine-tool and have influence on
the values of the output process parameters. The knowledge
meta-model and corresponding DM algorithms can now be
implemented on an actual dataset X to obtain a new predic-
tive knowledge model in terms of a matching set of rules.
This specific knowledge model is stored in the knowledge
base, and thus the off-line KDD procedure is completed. In
the case study presented in Section 5, the predictive knowl-
edge model in the form of rules is applied to adaptive
process control in die casting.

3.4 Concept of adaptive process control

Next, an application of the descriptive and predictive pro-
cess knowledge models in adaptive process control is con-
ceptualised. The overall idea is depicted in Fig. 4 and is
adapted from Ref. [27]. The core of Fig. 4 represents the so-
called EWS composed of three vital elements: a process, a

process implementation device, and a human subject. A
more detailed description of EWS can be found in Ref.
[27]. Within EWS, there is a PID control loop in which a
logic controller controls the process implementation device
(e.g., machine tool) over power elements (actuators). An-
other control loop can be implemented for adaptive process
control as indicated in the upper part of Fig. 4. Here, the
selected input and output process parameters must be mon-
itored. The monitored data are used for (1) continual acqui-
sition of data in the data collection loop (according to Fig. 2)
and (2) identification of the process state in each process
cycle as a basis for adaptive process control (as shown in
Fig. 4).

We now explain how the adaptive process control loop
acts. The objective is to accurately achieve the target values
of the output process parameters and maintain a stable
process, i.e., to minimise variance of the output process
parameters.

At the beginning of the operation, when no particular
knowledge model is available, the initial reference val-
ues (R) for the PID control loop, which are determined
by a process planner or recorded as experienced settings
from previous operations, are downloaded and set on
the logic controller via the communication interface (see
Fig. 4). Process cycles can now begin on this basis.
Without a priori knowledge, the output process param-
eter data usually varies noticeably due to limited control
over the process and numerous uncontrolled disturban-
ces that influence process stability. However, in the case
where the process has been already performed and the
corresponding dataset has been analysed by centroid-
based clustering, then the clusters and corresponding
centroids are recognised and stored in the knowledge
base. In this case, an expert can decide arbitrarily to
which centroid he or she would like to adjust the output
process parameters by defining the values of the attrib-
utes belonging to the selected centroid as the target
values for process control.

In the next step, the appropriate rules that form the predic-
tive part of the knowledge base must be selected. For this
purpose, the data vector (DATA) from the last process cycle
must be considered. These data are compared with the condi-
tional parts of the rules (Eq. 3) to select the appropriate rule for
each class type. By instantiating the target values into the
selected rules (Eq. 4), one obtains the adapted reference values
(RA), which are set on the logic controller as the new reference
for the next process cycle (see Fig. 4). This procedure is
repeated in each process cycle.

We now illustrate the adaptive control procedure in the
example shown in Fig. 5, which shows one cluster of data
instances and its centroid plotted in an aj–aj+1 plane. Colour
coding indicates different densities of data instances. Let us
consider that the first process cycle, which is based on initial
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reference values, results in the point noted with 1. In the
next cycle, the adapted reference values bring the output
process parameters to the point marked with 2, and so on.
As we can see, the adaptation of reference values causes
convergence of the resulting output process parameters to-
ward the target values, i.e., toward the selected centroid.
Hence, it is expected that higher process stability and thus
lower variance will be achieved, as indicated in Fig. 6.

4 DM and knowledge discovery in die casting cells

SL.AWS introduces the generic concept of self-learning in
autonomous manufacturing systems. To develop a learning

methodology and verify it in a real industrial case study, the
domain of observation must be limited to a certain technol-
ogy. In this research, HPDC is considered as the domain of
observation.

4.1 HPDC process

HPDC is a manufacturing process for net shape produc-
tion of precise metal pieces of complicated shape that
are produced in large quantities. As stated in Ref. [28],
the process (in comparison to alternative manufacturing
processes) is very productive, but it requires a compli-
cated and therefore expensive tool. As a consequence,
die casting is the preferred technology for large lots,

Fig. 4 Concept of adaptive process control
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generally of more than 50.000 pieces. HPDC is widely
used in the automotive industry [29] and in manufac-
turing of telecommunication equipment, personal com-
puters, and consumer electronic products [30]. High
precision and quality of appearance of metal compo-
nents are the most significant goals in the die casting
process. The die-casting process is successfully used to
produce components from aluminium and magnesium
alloys due to advantages such as low cost, high produc-
tivity and stable quality. Chiang et al. [31] notes that
the HPDC process technology is very complicated in
practical applications and that it is crucial to properly
set-up the parameters of the HPDC process to obtain
good mechanical properties and the desired performance
for the manufactured aluminium-alloy components.

According to Ref. [32], the quality of a die pressure
casting is the result of a great number of parameters. Some
of these parameters are controllable, and others are distur-
bance factors. The casting density is considered to be the
most representative quality characteristic in the die casting

process because it is related to many internal imperfections
in a casting (porosity, shrinkage porosity, micro-voids, etc.).

Rai et al. [33] states that the most important parameters
influencing quality and productivity of the die casting pro-
cess are melt temperature, mould temperature, and first- and
second-phase plunger velocities. Improper selection of any
of these parameters may cause defects (such as voids, sinks,
distortions and cracks) in the castings and drive longer
process cycle time. Similarly, Yarlagadda and Chiang [34]
define four major parameters influencing the quality of die-
casted parts: the melt temperature, the injection pressure, the
injection time or flow rate, and the mould or cavity
temperature.

In preparation of the HPDC process, the initial set-
ting of the process operating parameters is established
on an experimental basis. The setting procedure is time
consuming and produces a lot of defect castings. Due to
rapid expansion of the die casting process and the goal
of producing better quality products in a short period of
time, there is an ever-increasing demand to replace this
expert-reliant traditional trial-and-error method with an
advanced method based on knowledge. Therefore,
knowledge of the correct injection speed, injection pres-
sure, die temperature, and pouring temperature is very
important [35].

The abovementioned issues clearly indicate that there
is a need for developing a model for fast and accurate
prediction of process parameters. Such a model must
enable process stability, high part quality, and high pro-
ductivity. As an answer to these needs, several solutions
based on advanced numerical simulation techniques are
emerging, such as the finite element method (FEM),
finite difference method or boundary element method,
and artificial intelligence. At present, various FEM-
based commercial software packages are available for
complex 3D-flow behaviour simulations of molten metal

Fig. 6 Normal distribution of the attribute aj around its centroid a1j
before (a) and after (b) adaptive process control

Fig. 5 Distribution of instances
in cluster 1 defined with
centroid C1 and convergence of
data instances toward C1 during
adaptive process control
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inside the die cavities, such as ProCast, MoldFlow™, C-
Mold, etc. Excessive computational time and high soft-
ware prices limit the use of this software, which is
mainly applied in research by academics or by large
manufacturing enterprises [33].

Artificial intelligence techniques like ANN or genetic
algorithms (GAs), in combination with DoE (design of
experiments) techniques like the Taguchi method, have
been widely used for solving complicated and multivar-
iable manufacturing problems [32, 34–37]. In all of
these research contributions, one common characteristic
is that they use experimental results or data from sim-
ulation software as well as from experts in the die
casting industry for training. Despite these sophisticated
models based on ANN and GAs, there is still a lack of
comprehensive models that would take into account the
complex relationships between the overall die casting
process variables and would assist in achieving optimal
results (i.e., better quality and higher productivity) from
a given die casting machine by assigning appropriate
values to process variables in an interactive environment
[33].

4.2 DM and knowledge discovery in the CoCAST database

There were several reasons for selecting HPDC as the
application area for self-learning and adaptive process
control. First, HPDC is a modern and widely used
technology in high-tech sectors, where customers de-
mand high and robust quality and a reliable supply.
Second, the AWS concept was studied and the adequate
manufacturing execution system called CoCAST (Col-
laborative CASTing) was developed and implemented
in a die casting foundry [38]. As a consequence, a
large CoCAST database was available with process data
that had been collected over several years. These data
represented a real challenge for DM and knowledge
discovery.

There are several highly automated die casting cells
in operation in the observed HPDC foundry. Five of
them are monitored by the MES systems. Among these
five cells, four are identical and can produce the same
castings. The identified basic process entity, which must
be observed, is related to a particular casting and thus
to the corresponding tool. Neither the die casting ma-
chine nor the operator has a noticeable influence on the
process [39]. This cognition clearly indicates that, for
learning, data related to operations with a particular tool
must be taken into account.

During operations, each die casting process cycle is
monitored and recorded on the cells. Each cycle record
consists of values related to twelve attributes. The attrib-
utes are structured in three groups. The first three attributes are

organisational (cell id, tool id, date-and-time stamp), the
following five are input process parameters (time of phase
1, velocity of phase 2, pressure at phase 2, pressure at
phase 3, and reaction time of phase 3) and the last four
are output process parameters (pressure at return, pressure
at closing, temperature of oil, and thickness of tablet). The
scheme in Fig. 7 shows the measuring points in a die
casting cell where the input and output process parameters
are acquired.

The Weka DM suite [40] was selected for DM. Weka
is an open source software program that includes nu-
merous well-known DM algorithms and tools, and as
such, offers plenty possibilities for research. The
CoCAST database was examined with several Weka
algorithms. The objective here was to obtain knowledge
models, where knowledge is represented in the forms of
the centroid meta-meta-model according to Eq. (2) and
the rule meta-meta-model according to Eqs. (3) and (4),
which would correspond well to the nature of the die
casting process data and would enable prediction and
adaptive control of the process. In particular, the statis-
tical analysis of the CoCAST data indicated a high
variance of process parameters despite computerised
control of the die casting cells. Because of this vari-
ance, product quality and productivity were not as high
as expected. Therefore, it was anticipated that adaptive
process control based on knowledge discovered in the
process datasets would decrease the process variance
and increase its stability (see Fig. 6), which would then
contribute to higher quality of castings and higher pro-
ductivity of operations.

The process data stored in the CoCAST process
database came from successfully performed process
cycles that resulted in quality castings. To find possible
hidden patterns in the dataset, an algorithm for descrip-
tive DM can be selected from the Weka suite. The
clusters.Simple.Kmeans algorithm turned out to be a
suitable method for finding clusters in the CoCAST
dataset.

To adopt the descriptive meta-meta-model defined in
Eq. (2), a domain expert must select attributes from the
dataset that are relevant for knowledge discovery. Three
input process parameters (time of phase 1, velocity of
phase 2, and pressure at phase 3) and four output
process parameters (pressure at return, pressure at clos-
ing, temperature of oil, and thickness of tablet) were
selected in the CoCAST database because they were
recognised as the key parameters of the HPDC process.
During clustering, the parameter k determining the num-
ber of clusters must be determined arbitrarily by the
expert. Thus, k clusters are generated and are defined
by their centroids according to the meta-model defined
in Eq. (5).
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C1 ¼
TimeOfPhase11;VelocityOfPhase21; PressureAtPhase31; PressureAtReturn1;

PressureAtClosing1;TemperatureOfOil1;ThicknessOfTablet1

 !

C2 ¼
TimeOfPhase12;VelocityOfPhase22; PressureAtPhase32; PressureAtReturn2;

PressureAtClosing2;TemperatureOfOil2;ThicknessOfTablet2

 !

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ck ¼
TimeOfPhase1k ;VelocityOfPhase2k ; PressureAtPhase3k ; PressureAtReturnk ;

PressureAtClosingk ;TemperatureOfOilk ;ThicknessOfTabletk

 !

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð5Þ

where:

C1, C2, …, Ck Is kth centroid, k01,2, …,k
k Is number of centroids—clusters

TimeOfPhase1 Is the time of phase 1
VelocityOfPhase2 Is the velocity of phase 2

Fig. 7 Measuring points for input and output process parameter in a die casting cell
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PressureAtPhase3 Is the pressure at phase 3
PressureAtReturn Is the pressure at return
PressureAtClosing Is the pressure at closing
TemperatureOfOil Is the temperature of the oil
ThicknessOfTablet Is the thickness of the tablet.

By analysing the DM report and visualising the results, the
expert can decide which cluster should be selected for the
reference. The corresponding centroid can then be taken as the
vector of target values in adaptive control of the HPDC
process. The target values are those values of the process
parameters that are intended to be kept stable during adaptive
control. Therefore, they represent new knowledge about the
process, which is created from the observed dataset.

For learning and building of a predictive knowledge
model, the weka.classifiers.rules.M5Rules algorithm is ap-
plied. This algorithm is selected because it generated knowl-
edge models that best fit the learning datasets in our
investigations while achieving the highest correlation with
the datasets and the smallest fitting errors. The algorithm
provides a set of IF…THEN rules that forms the knowledge
model. In case of the die casting process, rules correlating
the input process parameters with output process parameters
have to be extracted. The generic form of the rules for
calculation of the three input parameters (i.e., time of phase
1, velocity of phase 2, and pressure at phase 3) are given in
Eqs. (6)–(8). This set of rules forms the knowledge meta-
model and is universal for all die casting cells.

TimeOfPhase1 1ð Þ ¼ w 1ð Þ
11 PressureAtReturnþ w 1ð Þ

12 VelocityOfPhase2þ wð1Þ
13 PressureAtPhase3

þw 1ð Þ
14 PressureAtClosingþ w 1ð Þ

15 TemperatureOfOilþ w 1ð Þ
16 ThicknessOfTablet þ w 1ð Þ

10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TimeOfPhase1ðqÞ ¼ wðqÞ
11 PressureAtReturnþ wðqÞ

12 VelocityOfPhase2þ wðqÞ
13 PressureAtPhase3

þwðqÞ
14 PressureAtClosingþ wðqÞ

15 TemperatureOfOilþ wðqÞ
16 ThicknessOfTablet þ wðqÞ

10

9>>>>>>>>=
>>>>>>>>;

ð6Þ

VelocityOfPhase2 1ð Þ ¼ w 1ð Þ
21 PressureAtReturnþ w 1ð Þ

22 TimeOfPhase1þ w 1ð Þ
23 PressureAtPhase3

þw 1ð Þ
24 PressureAtClosingþ w 1ð Þ

25 TemperatureOfOilþ w 1ð Þ
26 ThicknessOfTablet þ w 1ð Þ

20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VelocityOfPhase2ðqÞ ¼ wðqÞ
21 PressureAtReturnþ wðqÞ

22 TimeOfPhase1þ wðqÞ
23 PressureAtPhase3

þwðqÞ
24 PressureAtClosingþ wðqÞ

25 TemperatureOfOilþ wðqÞ
26 ThicknessOfTablet þ wðqÞ

20

9>>>>>>>>=
>>>>>>>>;

ð7Þ

PressureAtPhase3ð1Þ ¼ wð1Þ
31 PressureAtReturn þ wð1Þ

32 TimeOfPhase1þ wð1Þ
33 VelocityOfPhase2

þwð1Þ
34 PressureAtClosingþ wð1Þ

35 TemperatureOfOilþ wð1Þ
36 ThicknessOfTablet þ wð1Þ

30

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PressureAtPhase3ðqÞ ¼ wðqÞ
31 PressureAtReturn þ wðqÞ

32 TimeOfPhase1þ wðqÞ
33 VelocityOfPhase2

þwðqÞ
34 PressureAtClosingþ wðqÞ

35 TemperatureOfOilþ wðqÞ
36 ThicknessOfTablet þ wðqÞ

30

9>>>>>>>>=
>>>>>>>>;

ð8Þ

where:

TimeOfPhase1 Is the time of phase 1
VelocityOfPhase2 Is the velocity of phase 2
PressureAtPhase3 Is the pressure at phase 3

PressureAtReturn Is the pressure at return
PressureAtClosing Is the pressure at closing
TemperatureOfOil Is the temperature of the oil
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ThicknessOfTablet Is the thickness of the tablet
wðqÞ
jp Are weights, where j01, 2, 3 (number

of class type), p00, 1, 2,… 6 (number
of attributes), q01, 2, 3,…, q (number
of rule in ith class type).

The values of the weights are determined by the algo-
rithm according to the actual values of the process parame-
ters, thus fitting them to the learning dataset. In this way, a
particular knowledge model is obtained. Hence, the partic-
ular knowledge model consists of a number of rules in the
form of linear equations that provide sectional continuous
description of the solution space. The quality of the knowl-
edge is assessed by statistical measures such as the correla-
tion coefficient, mean absolute error, root mean squared
error, relative absolute error, and root relative squared error.

Let us briefly explain how the concept of adaptive control
introduced in Section 3 can be applied in a die casting
system. The main element of the system is the casting
process that transforms the melted metal into a casting.
Other process inputs are generated by the die casting ma-
chine (position, kinematic, and energy), which are actuated
by a piston of a hydraulic motor. Interactions between the
machine, melt, die (tool), and its cavity, constitute the die-
casting process, which results in a casting (with a tablet),
heat, and other effects as outputs. The machine is controlled
by a programmable logic controller. The controller converts
input reference values into control signals, which are con-
ducted to the machine where they are actuated to the process
inputs. According to this description, it is clear that the
controller manipulates the machine and not the process
itself. Therefore, due to various effects and disturbances that
occur in the system, the process is not as stable as it should
be. To obtain better control over the casting process, adap-
tive process control should be introduced, as shown in the
upper part of Fig. 4. On-line measuring of certain input and
output parameters and their association with the conditional
part of a rule enables selection of the appropriate rule from
the rule set for each process parameter according to the
knowledge model represented in Eqs. (6)–(8). Then, the
corresponding rule facilitates calculation of adapted input
process parameters according to a specific objective, which
can be determined form the target centroid. Thus, it is
expected that the casting process will be better controlled
and will result in smaller variance of the output process
parameters.

It should be mentioned that the form of the knowledge
model defined in Eqs. (6)–(8) is represented by the meta-
model and can be implemented in any die casting cell.
During learning on actual process data, the knowledge
meta-model is then instantiated to the actual knowledge
model, which is (as was already explained) attributed to a
tool and thus to a product.

The presented approach is illustrated in an industrial case
study portrayed in the next section.

5 Case study

For illustration of these concepts, a portion of data was
extracted from the CoCAST database. The selected data
were matched to die casting operations related to a particular
batch, which corresponds to production of a certain casting
with a particular tool on a particular die casting cell. Such a
dataset represents a basic learning unit.

The investigated batch was produced over a period of
two and half years in several lots with shorter or longer
interruptions between them. The investigated dataset is
composed of 56.225 instances, which were recorded be-
tween the following time intervals: 23 September–02 No-
vember 2007 (12.437 records), 28 April–03 May 2008
(2.859 records), 06–18 June 2008 (14.338 records) 16 Oc-
tober–20 November 2008 (23.996 records), 06–09 April
2009 (378 records), 29 May–09 June 2009 (6.637 records),
24 June–07 July 2009 (14.121 records), 24–24 September
2009 (14.154 records), and 17–25 March 2010 (5.638
records). It should be noted that the instances were recorded
only if the entire die-casting cycle was successfully per-
formed and resulted in a quality casting. In other cases, the
appropriate alarm messages were recorded.

The selected dataset was processed within the Weka
environment according to the KDD steps. First, the data
were cleaned by a die casting expert with the help of statistic
and visualisation tools. The objective of this step is to
eliminate outlying data that do not correspond to the process
from the dataset. In addition, attributes that are not relevant
for the selected dataset and objectives of KDD are excluded.

After cleaning, the remaining dataset includes 56.047
instances and 7 attributes out of 12. The statistical character-
istics of the attributes of the remaining dataset are given in
Table 1.

To gain an overview of the data, the Weka clustering
algorithm clusterer Simple.KMeans was applied first. The
results are two clusters, i.e., cluster 1 and cluster 2, the
centroids of which are given in Table 2.

Visualisation of the results is shown in Fig. 8, which
clearly indicates how the instances are grouped in two
distinctive clusters—clusters 1 and 2. The results are visual-
ised in four different planes (Fig. 8a–d) showing the clusters
in accordance with the attribute pairs. In Fig. 8a, one can see
that all instances belonging to cluster 1 have the value of the
attribute PressureAtPhase3 distributed around the value
355 bar while the instances belonging to cluster 2 are
distributed around the value 370 bar. Similarly, as shown
in Fig. 8b, the value of the attribute ThicknessOfTablet of
the instances belonging to cluster 2 is equal to 0 mm, and
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this occurred at the beginning of the data recording for a
certain period of time. A query in the database returned that
this event occurred during the period from 23 September to
02 November 2007 (12.243 instances recorded) and in the
period from 28 April to 03 May 2008 (2.813 instances
recorded). Altogether, 15.036 instances in a row have the
same value (0) for the attribute ThicknessOfTablet, and all
of them belong to cluster 2. Fig. 8c confirms that the
instances belonging to cluster 2 have the value of attribute
ThicknessOfTablet equal to 0; additionally, the instances
belonging to cluster 1 are distributed around the value
38,27 bar for the attribute PressureAtReturn and around
the value 21,11 mm for the attribute ThicknessOfTablet.
The thick black line in Fig. 8d indicates the cluster centroid
(1.874,31 ms) around which most of the instances of cluster
1 (from the attribute TimeOfPhase1) are distributed.

As we can see, the use of DM and knowledge discovery
software provides new insight into the die casting process
and its characteristics.

As explained in Chapter 4, another type of knowledge is
needed for adaptive control, which must be structured in a
set of rules. For the die casting case, the weka.classifiers.ru-
les.M5Rules algorithm turned out to be the most suitable.
Therefore, the selected dataset was processed with the men-
tioned algorithm, and a set of rules explaining the relation-
ship of the three input process parameters, namely,
TimeOfPhase1, VelocityOfPhase2, and PressureAtPhase3,

was generated. Thus, three subsets of rules form the knowl-
edge model. Table 3 summarises the statistical features of
the rule subsets. One can see that the number of rules is
quite high, especially for the indirectly controlled input
parameters TimeOfPhase1 (136 rules) and VelocityOf-
Phase2 (182 rules). This fact indicates that (1) the interrela-
tions among process parameters are quite complex and (2)
the model is fine-grained. The values of the correlation
coefficient and errors (Table 3) confirm this last observation.

From the statistical characteristics of the selected attrib-
utes given in Table 1, one can notice high deviations of
values except for the attribute PressureAtPhase3. This ob-
servation is because this attribute is directly controlled on
the die casting machine, while the other two input attributes
(i.e., TimeOfPhase1 and VelocityOfPhase2) are indirectly
controlled. The standard deviations of these two parameters
reflect the variance and dynamics of the resisting load,
which influences the kinematics and dynamics of the plung-
er that pushes molten metal into a die.

Next, we examine how variances of process parameters
can be reduced to achieve better process stability, as
explained in Chapter 4. Consider that the objective of adap-
tive control would be more narrowly distributed functions
dispersed around the centroid values. For the target values,
one can take the centroid values of cluster 1 (Table 2), which
is the most significant cluster. Based on this assumption,
the target values for the process parameters would be:

Table 1 Statistical values of the selected attributes

Attribute Statistic value

Name Type Missing (%) Distinct Unique (%) Min Max Mean SD

TimeOfPhase1 (ms) Numeric 0 (0) 904 98 (0) 1.337 3.211 1.828,02 160,70

VelocityOfPhase2 (m/s) Numeric 0 (0) 13.196 5.285 (9) 1,40 3,00 2,57 0,46

PressureAtPhase3 (bar) Numeric 0 (0) 13 1 (0) 354,60 370,37 359,11 6,69

PressureAtReturn (bar) Numeric 0 (0) 3.373 407 (1) 19,82 121,99 38,10 21,24

PressureAtClosing (bar) Numeric 0 (0) 40.735 29.868 (53) 85,06 100,00 94,86 3,07

TemperatureOfOil (°C) Numeric 0 (0) 1.396 109 (0) 24,68 48,06 38,09 3,62

ThicknessOfTablet (mm) Numeric 0 (0) 221 25 (0) 0 33,90 15,35 9,65

Table 2 Cluster centroids
Attribute Full data Cluster 1 Cluster 2

56.047 (100 %) 40.719 (73 %) 15.328 (27 %)

TimeOfPhase1 (ms) 1.828,02 1.874,31 1.705,04

VelocityOfPhase2 (m/s) 2,57 2,84 1,86

PressureAtPhase3 (bar) 359,11 355,00 370,00

PressureAtReturn (bar) 38,10 38,27 37,64

PressureAtClosing (bar) 94,85 94,73 95,18

TemperatureOfOil (°C) 38,09 37,21 40,43

ThicknessOfTablet (mm) 15,35 21,11 0,07
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PressureAtReturn038,27 bar, TimeOfPhase101.874,31 ms,
VelocityOfPhase202,84 m/s, PressureAtPhase30355 bar,
PressureAtClosing094,73 bar, TemperatureOfOil037,21 °C,
and ThicknessOfTablet021,11 mm.

The rule set and centroids form the knowledge model for
the particular case. Next, we consider how the knowledge
model can be applied for adaptive process control. To cal-
culate the new reference values for the input process

parameters in the next process cycle, the values of the
parameters of the last process cycle must be known. These
values dictate selection of the appropriate rules, which are
then used for calculation of the new reference values for
TimeOfPhase1, VelocityOfPhase2, and PressureAtPhase3.

For example, let us assume that the measured values of
the last process cycle are: PressureAtReturn090,10 bar,
TimeOfPhase101.905 ms, VelocityOfPhase202,88 m/s,

Fig. 8 Visualisation of the results of clustering

Table 3 Cross-validation of
models M5Rules TimeOfPhase1 VelocityOfPhase2 PressureAtPhase3

Number of rules 136 182 9

Time to build the model (s) 3.237,28 5.700,42 8,05

Correlation coefficient 0,79 0,99 0,999

Mean absolute error 67,56 0,04 0,07

Root mean squared error 98,86 0,07 0,17

Relative absolute error (%) 50,70 9,51 1,26

Root relative squared error (%) 61,52 15,91 2,60

Total number of instances 56.047 56.047 56.047

1740 Int J Adv Manuf Technol (2013) 66:1725–1743



PressureAtPhase30355,04 bar, PressureAtClosing096,67 bar,
TemperatureOfOil037,93 °C, and ThicknessOfTablet0
20,60 mm. Next, one can select the appropriate rules from
the rule set. Selection of an appropriate rule is performed by
verification of the conditional part of a rule. For example, the
conditional part of Rule 1 for TimeOfPhase1 states:

IF

ThicknessOfTablet > 6;85

PressureAtReturn <0 32;19

PressureAtClosing <0 92;21

TemperatureOfOil > 39;85

VelocityOfPhase2 <0 2;92

It can be observed that the conditional part of the rule is
not satisfied because the following conditions are not
satisfied:

PressureAtReturn Should be smaller than or equal to
32,19, but in our case it is greater
(90,10)

PressureAtClosing Should be smaller than or equal to
92,21, but in our case it is greater
(96,67)

TemperatureOfOil Should be greater than 39,85, but in
our case is smaller (37,93).

The first rule in the rule set, whose conditional part is
completely satisfied, is Rule 25. The action part of the rule
then gives the formula for calculation of the TimeOfPhase1:

TimeOfPhase1 ¼ 0;5689 � PressureAtReturnþ 1:036;8386 �
VelocityOfPhase2þ 67;4787 � PressureAtPhase3 � 0;0899 �
PressureAtClosing� 15;4466 � TemperatureOfOilþ 20;4164 �
ThicknessOfTablet� 24:902;1816

ð9Þ

Now we can substitute the variables with the target
values (from Table 2 for Cluster 1):

TimeOfPhase1 ¼ 0;5689 � 38;27þ 1:036;8366 � 2;84
þ 67;4787 � 355� 0;0899 � 94;73� 15;4466 �
37;21þ 20;4164 � 21;11� 24:902;1816

¼ 1:866;81264

ð10Þ
Thus, we obtain the final result for the process parameter

TimeOfPhase101.866,81 ms, which can be considered for
adaptive control.

Analogously, for calculation of VelocityOfPhase2, the
first rule whose conditional part correspond to the actual
values of process parameters is Rule 7:

IF

PressureAtPhase3 <0 362;49

TemperatureOfOil <0 38;56

TimeOfPhase1 > 1:763;50

TimeOfPhase1 <0 1:922;50

TemperatureOfOil > 36;06

PressureAtClosing > 94;10

PressureAtClosing <0 97;22

ThicknessOfTablet <0 22;25

PressureAtClosing > 94;98

THEN

VelocityOfPhase2 ¼ 0 � PressureAtReturn� 0 � TimeOfPhase1

þ 0;0001 � PressureAtPhase3þ 0;0002 �
PressureAtClosing þ 0;0003 � TemperatureOfOil

� 0;0004 � ThicknessOfTabletþ 2;9162 ¼ 2;97

ð11Þ

Hence, the calculated reference value for the next cycle
for VelocityOfPhase202,97 m/s.

The last calculation is performed for PressureAtPhase3.
Here, several rules in the rule set fit the actual values.
Therefore, the first one that fits the condition is selected,
which is Rule 1:

IF

ThicknessOfTablet > 2;60

TimeOfPhase1 <0 2:021;50

THEN

PressureAtPhase3 ¼ 0 � PressureAtReturnþ 0 � TimeOfPhase1

� 0;0029 � VelocityOfPhase2� 0;0002 �
ThicknessOfTabletþ 355;02 ¼ 355;08

ð12Þ

Thus, the calculated reference value for Pressur-
eAtPhase30355,08 bar.

The calculated new reference values from the vector of
adapted reference values RA can now be set on the logic
controller for the next process cycle.

The presented case clearly indicates the usefulness of the
particularised knowledge models.
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6 Conclusions and discussion

In this paper, the concept of a SL.AWS is proposed. This
system is based the concept of AWS and represents a po-
tential building block for future intelligent and adaptable
manufacturing networks. Learning in AWS is introduced
through a learning loop that includes DM, knowledge dis-
covery, and knowledge management components. The
learning loop provides a systemic solution for knowledge
discovery in databases.

The main advantage of the proposed self-learning con-
cept is that the knowledge models rely on historical data
collected during manufacturing operations on existent ma-
chinery, with real tools, in authentic industrial environments
and under dynamic conditions. The historical data are stored
in a database and used for processing with advance DM and
knowledge discovery methods.

Newly discovered knowledge is stored in the form of
knowledge models in the data-and-knowledge base. The
generated knowledge models incorporate complex relations
among a great number of process variables and represents
adequate knowledge for supporting decision making and
adaptive process control in manufacturing systems.

A three level knowledge model is developed, which is
composed of the following: (1) a generic reference model
(meta-meta-model), (2) a process specific reference model
(meta-model), and (3) an actual model based on historical
data. All models rely on mathematical formulations.

The models incorporate complex relationships among
process variables and other relevant factors of the work
system as well as the environment that influence process
stability, product quality, and system productivity. There-
fore, learning feedback is established, which enables the
work system to learn continuously from experiences in its
own operations.

The described knowledge meta-model is developed for
HPDC. The model is generic in nature and can be used in
any die casting cell that provides monitoring of specific
process parameters. The meta-model is instantiated into a
particular knowledge model by learning on a particular
dataset.

The concept of adaptive process control in die casting is
also described in the paper. The paper shows how new
knowledge in the form of clusters and rules can be applied
to decrease the process variance and thus increase the prod-
uct quality and the productivity of operations.

The presented approach is demonstrated in an industrial
case study carried out on a large set of production data, and
this demonstration clearly indicates the feasibility of this
approach.

Further research will be aimed at the implementation of
adaptive control as well as issues of knowledge manage-
ment in a manufacturing network.
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